Picomolar sensitivity to inositol trisphosphate in Xenopus oocytes.
نویسندگان
چکیده
Ca(2+) liberation from the endoplasmic reticulum mediated by inositol trisphosphate receptor/channels (IP3Rs) in response to production of the second messenger IP3 regulates numerous signaling pathways. However, estimates of resting and physiologically relevant cytosolic concentrations of IP3 vary appreciably. Here we directly address this question, taking advantage of the large size of Xenopus oocytes to image Ca(2+) liberation evoked by bolus intracellular injections of known concentrations of IP3. Our principal finding is that IP3 evokes both global and local Ca(2+) signals in freshly isolated oocytes at concentrations as low as a few pM. A corollary is that basal, resting [IP3] must be even lower, given the absence of detectable Ca(2+) signals before injection. The dose/response curve for IP3-activation of Ca(2+) liberation suggests that freshly isolated oocytes express two distinct functional populations of IP3 receptors with EC50 values around 200 pM and tens of nM, whereas the high-affinity receptors are not apparent in oocytes examined later than about 3 days after isolation from the ovary.
منابع مشابه
Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate by the oocytes of Xenopus laevis.
The pathway and kinetics of inositol 1,4,5-trisphosphate (IP3) metabolism were measured in Xenopus laevis oocytes and cytoplasmic extracts of oocytes. Degradation of microinjected IP3 in intact oocytes was similar to that in the extracts containing comparable concentrations of IP3 ([IP3]). The rate and route of metabolism of IP3 depended on the [IP3] and the intracellular free Ca2+ concentratio...
متن کاملThe physiologic concentration of inositol 1,4,5-trisphosphate in the oocytes of Xenopus laevis.
To measure the concentration of inositol 1,4,5-trisphosphate ([IP3]) in small regions of single Xenopus oocytes, a biological detector cell was combined with capillary electrophoresis. This method is 10, 000 times more sensitive than all existing assays enabling subcellular measurement of [IP3] in Xenopus oocytes. Upon addition of lysophosphatidic acid to an oocyte, [IP3] increased from 40 to 6...
متن کاملCarboxyl-terminal peptide of beta-amyloid precursor protein blocks inositol 1,4,5-trisphosphate-sensitive Ca2+ release in Xenopus laevis oocytes.
The effects of Alzheimer's disease-related amyloidogenic peptides on inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) mobilization were examined in Xenopus laevis oocytes. Intracellular Ca(2+) was monitored by electrophysiological measurement of the endogenous Ca(2+)-activated Cl(-) current. Application of a hyperpolarizing pulse released intracellular Ca(2+) in oocytes primed by pre-injec...
متن کاملAdenophostin A induces spatially restricted calcium signaling in Xenopus laevis oocytes.
The activation of intracellular calcium release and calcium entry across the plasmalemma in response to intracellular application of inositol 2,4,5-trisphosphate and adenophostin A, two metabolically stable agonists for inositol 1,4,5-trisphosphate receptors, was investigated using Xenopus laevis oocytes and confocal imaging. Intracellular injection of inositol 2,4,5-trisphosphate induced a rap...
متن کاملIntracellular targeting and homotetramer formation of a truncated inositol 1,4,5-trisphosphate receptor-green fluorescent protein chimera in Xenopus laevis oocytes: evidence for the involvement of the transmembrane spanning domain in endoplasmic reticulum targeting and homotetramer complex formation.
In an attempt to define structural regions of the type I inositol 1, 4,5-trisphosphate [Ins(1,4,5)P3] receptor [Ins(1,4,5)P3R] involved in its intracellular targeting to the endoplasmic reticulum (ER), we have employed the use of green fluorescent protein (GFP) to monitor the localization of a truncated Ins(1,4,5)P3R mutant containing just the putative transmembrane spanning domain and the C-te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell calcium
دوره 58 5 شماره
صفحات -
تاریخ انتشار 2015